Density functional theory study of vibrational spectra, and assignment of fundamental modes of dacarbazine

S GUNASEKARAN^a, S KUMARESAN^{b,*}, R ARUNBALAJI^a, G ANAND^b and S SRINIVASAN^c

^aSpectrophysics Research Laboratory, Pachaiyappa's College, Chennai 600 030 ^bDepartment of Physics, Arulmigu Meenakshi Amman College of Engineering, Vadamavandal 604 410 ^cDepartment of Physics, Arupadai Vedu Institute of Engineering Technology, Paiyanoor 603 104 e-mail: yeskay72@gmail.com

MS received 6 November 2007; revised 9 February 2008

Abstract. The FTIR and FT Raman spectra of dacarbazine were recorded in the regions 4000–400 and 3500–100 cm⁻¹, respectively. The optimized geometry, wavenumber, polarizability and several thermodynamic properties of dacarbazine were studied using *ab initio* Hartree–Fock, MP2 and DFT methods. A complete vibrational assignment aided by the theoretical harmonic wavenumber analysis was proposed. The calculated harmonic vibrational frequencies were compared with experimental FTIR and FT Raman spectra. Based on the comparison between calculated and experimental results and the comparison with related molecules, assignments of fundamental vibrational modes were made. The X-ray geometry and experimental frequencies were compared with the results of theoretical calculations.

Keywords. FTIR; FT-Raman; density functional theory; dacarbazine.

1. Introduction

Dacarbazine, used as antineoplastic in the treatment of tumors. It belongs to the group of medicines called alkylating agents. It is used in the treatment of cancer of the lymph system and malignant melanoma a type of skin cancer. Dacarbazine, (DTIC-NSC-45388) is the single most active agent for the treatment of malignant melanoma. In addition to dacarbazine, other dimethyltriazenes have shown to demonstrate antitumor properties.^{1–5} Literature survey reveals that to the best of our knowledge, no *ab initio* HF/MP2/ DFT frequency calculations of dacarbazine have been reported so far.

It is difficult to interpret the spectra of this molecule because of their complexity and low symmetry. In the interest of these physiological applications and the consequent in their qualitative and quantitative characterization in aqueous solution, the quantum mechanical calculations of this compound were thoroughly investigated. In this study, density functional theory (DFT) by using B3LYP hybrid functional, Moller–Plesset (MP2) and *ab initio* Hartree– Fock (HF) computations of the vibrational spectrum, the molecular geometry, the atomic charges and molecular polarizability calculations were carried out for dacarbazine molecule. The experimental geometric data of the molecule were taken from the Cambridge crystallographic database.⁶ *Ab initio* HF and density functional theory (DFT) calculations were performed to support our wavenumber assignment. Density functional calculations are reported to provide excellent vibrational wavenumber of organic compounds if the calculated frequencies are scaled to compensate for the approximate treatment of electron correlation, for basis set deficiencies and for the anharmoni-city.^{7–10}

2. Experimental

The compound dacarbazine was purchased from Messrs Sigma–Aldrich Chemical Company, USA with more than 98% purity and was used as such without further purification to record FTIR and FT Raman spectra. The FTIR spectrum of the compound was recorded in the region $4000-400 \text{ cm}^{-1}$ in evacuation mode on Bruker IFS 66V spectrophotometer using KBr pellet technique (solid phase) with 4.0 cm⁻¹ resolution. The FT Raman spectrum was recorded using 1064 nm line of Nd : YAG laser as excitation wavelength in the region $3500-100 \text{ cm}^{-1}$ on Bruker IFS 66V spectrometer equipped with FRA

^{*}For correspondence

Figure 1. FTIR spectrum of dacarbazine.

Figure 2. FT-Raman spectrum of dacarbazine.

106 FT Raman module accessory. The experimental FTIR and FT Raman spectra of dacarbazine are presented in figures 1 and 2.

3. Computational methods

The entire calculations performed at HF, MP2 and B3LYP levels on an AMD 4000+/3·2 GHz personal computer using Gaussian 03 W program package.¹¹ Initial geometry generated from standard geometrical parameters minimized without any constraint in the potential energy surface at HF level, adopting the standard 6-31G basis set. The optimized structural parameters used in the vibrational wavenumber calculations at the HF and DFT levels to characterize all stationary points as minima. Then, vibrationally averaged nuclear positions of dacarbazine used for harmonic vibrational wavenumber calculations resulting in IR and Raman wavenumbers together with in-

tensities. Vibrational wavenumbers computed at DFT level have been adjudicated to be more reliable than those obtained by the computationally demanding Moller–Plesset perturbation methods. Finally, the calculated normal mode vibrational wavenumbers provide thermodynamic properties also through the principle of statistical mechanics. The assignments of the calculated wavenumbers supported by the animation option of chemcraft, a graphical interface for Gaussian programs, which gives a visual presentation of the shape of the vibrational modes.¹²

4. Results and discussion

4.1 Geometric parameters

In this work, we performed full geometry optimization of the title compound. The optimized structure parameters of the title compound calculated by *ab*

Molecular parameter	X-ray ^a	AM1	HF/6-31G	B3LYP/6-31G	B3LYP/6-311G	MP2/6-31G
Bond length						
$C_1 - N_2$	1.330	1.349	1.297	1.326	1.325	1.260
$C_1 - N_5$	1.380	1.396	1.365	1.378	1.376	1.266
$C_1 - H_{14}$	1.080	1.095	1.064	1.077	1.074	$1 \cdot 100$
$C_{3}-C_{4}$	1.390	1.428	1.365	1.392	1.389	1.346
$C_3 - C_6$	1.470	1.480	1.467	1.473	1.472	1.351
$N_5 - H_{15}$	0.990	0.986	0.990	1.008	1.005	1.009
$C_6 - O_7$	1.230	1.247	1.231	1.254	1.254	1.208
$C_6 - N_8$	1.380	1.376	1.351	1.369	1.367	1.369
$N_8 - H_{16}$	0.990	0.988	0.991	1.009	1.006	1.012
$N_8 - H_{17}$	0.990	0.989	0.991	1.007	1.004	1.012
$N_9 - N_{10}$	1.250	1.250	1.248	1.298	1.299	1.248
$N_{10} - N_{11}$	1.340	1.335	1.310	1.338	1.339	1.352
$N_{11}-C_{12}$	1.470	1.460	1.455	1.465	1.464	1.438
$N_{11}-C_{13}$	1.460	1.460	1.448	1.456	1.456	1.438
C_{12} - H_{18}	1.100	1.123	1.081	1.095	1.091	1.113
C_{13} - H_{22}	1.100	1.121	1.078	1.090	1.086	1.113
$C_{13}-H_{23}$	1.100	1.122	1.083	1.097	1.092	1.113
CC		0.9944	0.9978	0.9994	0.9998	0.9965
MAD		0.0169	0.0197	0.0033	0.0197	0.1852
RMS		0.0204	0.0224	0.0045	0.0024	0.0036
Bond angle						
$N_2 - C_1 - N_5$	110.450	111.935	110.594	110.874	110.844	111.004
$N_2 - C_1 - H_{14}$	125.720	125.372	126.171	125.874	125.764	124.496
$C_1 - N_2 - C_3$	107.080	106.138	107.005	106.479	106.453	103.997
$N_{5}-C_{1}-H_{14}$	123.820	122.693	123.236	123.252	123.392	124.500
$N_2 - C_2 - C_4$	121.390	124.281	120.437	120.372	120.14	123.593
$C_2 - C_4 - N_0$	127.770	125.339	129.919	129.782	129.787	129.401
$C_{2}-C_{4}-C_{7}$	123.570	122.386	123.365	123.856	123.927	119.997
$N_{\epsilon} - C_{4} - N_{0}$	126.650	129.202	124.378	124.899	124.865	129.409
$C_4 - N_5 - H_{15}$	125.460	126.296	124.607	123.420	123.384	120.001
$C_4 - N_9 - N_{10}$	116.820	119.263	115.196	113.615	113.736	120.005
$O_7 - C_7 - N_8$	120.700	120.185	122.341	122.897	122.706	120.000
$C_{6} - N_{8} - H_{16}$	118.400	121.056	120.903	119.819	119.857	119.996
$C_{c} - N_{o} - H_{17}$	117.280	118.547	118.551	118.832	118.764	120.003
$N_0 - N_{10} - N_{11}$	116.580	119.425	116.285	113.740	113.63	109.502
$N_{10} - N_{11} - C_{12}$	122.300	123.978	120.858	121.131	120.988	109.446
$N_{10} - N_{11} - C_{12}$	115.010	115.522	117.302	116.858	116.889	109.440
$C_{12} - N_{11} - C_{12}$	117.780	113.380	121.840	122.010	122.123	109.506
$N_{11}-C_{12}-H_{18}$	111.150	111.764	110.759	110.411	110.442	109.439
$N_{11} - C_{12} - H_{10}$	108.370	108.144	107.953	108.283	108.295	109.457
$N_{11}-C_{12}-H_{22}$	110.200	111.542	108.582	107.838	107.839	109.465
$N_{11}-C_{13}-H_{22}$	110.150	107.023	110.822	111.002	111.031	109.447
$H_{18}-C_{12}-H_{10}$	109.090	109.246	109.937	110.426	110.428	109.464
$H_{22}-C_{12}-H_{22}$	108.560	108.733	108.906	109.124	109.067	109.202
CC		0.9715	0.9814	0.9751	0.9746	0.9568
MAD		1.32.96	1.0395	1.3335	1.2750	1.3357
RMS		1.7229	1.4339	1.7452	1.6729	1.6150

Table 1. Selected bond lengths (Å) and inter-axial angles (°) for dacarbazine.

^aGeometrical parameters determined with X-ray diffraction method from ref. [6]

CC, Correlation coefficient; MAD, Mean arithmetic deviation; RMS, Root mean square error

initio, MP2, DFT and AM1 methods listed in table 1 are in accordance with atom numbering scheme given in figure 3b. The B3LYP method leads to ge-

ometry parameters, which are close to experimental data.⁶ A statistical treatment of these data (see at the bottom of table 1) shows that for the bond lengths

Figure 3. a. X-ray structure of dacarbazine. b. Geometry of the dacarbazine optimized at B3LYP/6-31G(d, p).

Figure 4. Calculated bond lengths and bond angles in comparison with experimental data.

B3LYP/6-31G(d, p) (figure 4) is slightly better than the HF/6-31G(d, p) geometry. The correlation coefficient for bond lengths was 0.9994 for B3LYP/631G(d, p) method. The agreement for bond angles is not as good as that for the bond distances. The slight variation with the experimental value is due to the

	Calculated wave number (cm^{-1})							
	Observed wave number (cm^{-1})		HF 6-31G (<i>d</i> , <i>p</i>)		B3I 6-31G	LYP (<i>d</i> , <i>p</i>)	M 6-31G	P2 (<i>d</i> , <i>p</i>)
Vibrational assignment	FTIR	FT - Raman	Wave number	Rel Intensity	Wave number	Rel Intensity	Wave number	Rel Intensity
$\gamma_{\rm as} {\rm NH}_2$	3370 (w)	3371 (w)	3596	13	3376	8	3389	0
γNH	3321 (w)		3544	17	3314	9	3380	38
$\gamma_{\rm s} {\rm NH}_2$	3232 (w)		3466	14	3238	8	3207	2
γ _s CH	2957 (w)	2937 (m)	3140	0	2978	0	3132	0
$\gamma_{\rm as} { m CH}_3$	2869 (w)		2994	2	2861	2	3129	0
$\gamma_{\rm as} CH_3$	2853 (w)	2851 (w)	2988	3	2858	1	3124	5
$\gamma_{\rm as} { m CH}_2$	2819 (w)		2962	2	2814	1	3098	1
$\gamma_{\rm as} { m CH}_2$		2780 (w)	2930	6	2786	5	3092	2
$\gamma_{\rm s} { m CH}_3$	2755 (w)		2897	6	2756	5	2947	1
$\gamma_{\rm s} {\rm CH}_3$		2739 (w)	2877	13	2734	14	2943	4
γC=O	1612 (s)	1613 (s)	1708	70	1620	80	1610	53
γC=N	1510 (w)	1501 (m)	1673	57	1516	53	1572	11
$\rho \text{C-NH}_2$	1496 (s)		1657	11	1498	2	1509	1
$ ho \mathrm{NH}_2$	1448 (w)	1441 (w)	1567	67	1434	6	1495	8
γringCN	1441 (w)		1549	8	1420	9	1490	1
γ CC + γ ring + ρ NH ₂	1404 (<i>m</i>)	1402 (w)	1543	0	1406	1	1483	2
γ CC + α N - CH ₂ + β NCH	1394 (w)		1531	6	1395	8	1450	13
$\delta_{\rm as} CH_3 + \gamma ring$	1383 (w)		1517	1	1386	2	1416	5
$\delta_{\rm as} CH_3 + \gamma ring$		1386 (w)	1503	2	1386	6	1398	2
$\delta_{\rm as} \rm CH_3 + \gamma ring$		1369 (s)	1499	1	1364	3	1383	11
$\delta_{\rm s} {\rm CH}_3 + \gamma {\rm ring}$	1337 (<i>m</i>)		1483	1	1345	4	1373	11
$\delta_{\rm s} {\rm CH}_3 + \gamma {\rm ring}$	1295 (w)	1285 (w)	1456	16	1289	9	1245	48
$\delta_{\rm s} {\rm CH}_3 + \gamma {\rm ring} + \beta {\rm NCH}$	1280 (w)		1412	78	1282	100	1226	4
$\delta_{\rm s} {\rm CH}_3 + \gamma {\rm ring}$		1263 (w)	1391	38	1266	1	1218	8
$\gamma \text{CN} + \delta \text{CH}$	1255 (w)		1382	29	1255	1	1191	5
γ ring+ δ CH	1209 (w)		1342	9	1223	2	1139	15
$\alpha \text{ NH} + \gamma \text{NNN}$		1166(w)	1273	3	1166	1	1131	1
$\gamma NN + \delta CH_3$	1137 (w)	1121 (w)	1223	4	1130	4	1106	0
$\gamma NN + \beta CH$	1082(s)	1078 (w)	1184	1	1087	0	1074	18
β CH + δ CNC		1064 (w)	1166	1	1067	0	1061	14
$\rho \operatorname{CH}_2 + \beta \operatorname{CH}$	1052 (w)		1145	0	1047	0	1040	2
$\rho C - NH_2 + \delta CNC$	1022(s)	1028 (w)	1132	24	1027	8	996	1
$\rho \operatorname{CH}_2 + \delta \operatorname{CNC}$	966 (w)		1113	7	1026	8	987	1
$\rho \operatorname{CH}_3 + \beta \operatorname{CH}$	930 (s)	950 (w)	1086	3	999	18	974	19
$\rho \operatorname{CH}_3 + \gamma \operatorname{ring}$	889 (m)	889 (w)	1085	42	995	11	954	26
$\Delta ring + \gamma ring(CN)$	874 (w)	876 (w)	977	4	891	3	841	1
γ N–CH ₃ + α NNN	830 (w)	844 (w)	917	0	841	2	811	8
β NCH + β NCC	794 (w)	797 (m)	915	3	774	1	767	100
βCH	745 (w)	743 (w)	857	14	748	4	726	9
$\gamma NN + \gamma N - CH_3 + \alpha CNC$	718 (w)		788	0	735	0	698	18
β NH + β CCO	682 (w)	670 (w)	759	2	665	4	638	14
β (CCN + NH)	630 (<i>m</i>)	631 (<i>m</i>)	718	65	643	22	598	6
α NNN + α CNC	625 (w)		690	7	635	18	548	2
β NCO + β NH + β CH	622 (w)	610 (w)	690	4	635	2	589	8
$\tau C - NH_2 + \beta NH_2$	593 (w)		629	19	594	13	493	15
$\rho \text{ NH}_2 + \alpha \text{NNH} + \alpha \text{ CCO}$	554 (w)	560 (<i>m</i>)	605	8	557	6	474	2
Ring deformation	525 (w)		578	10	525	3	463	30
β NH + α NCH	514 (w)	510 (w)	564	3	512	23	407	8
α C–NH ₂		420 (w)	441	2	410	2	369	4

Table 2. Observed FTIR, FT-Raman and calculated wave numbers for dacarbazine using HF/6-31G(d, p), B3LYP/6-31G(d, p) and MP2/6-31G(d, p) methods.

(contd...)

			Calculated wave number (cm ⁻¹)						
	Observed wave number (cm ⁻¹)		HF 6-31G (<i>d</i> , <i>p</i>)		B3LYP 6-31G (<i>d</i> , <i>p</i>)		MP2 6-31G (<i>d</i> , <i>p</i>)		
Vibrational assignment	FTIR	FT- Raman	Wave number	Rel Intensity	Wave number	Rel Intensity	Wave number	Rel Intensity	
ringCNH + ρ NH ₂ + β NCO		381 (m)	415	0	383	0	349	9	
α NNH + α CCO			413	2	369	0	325	8	
$\omega \mathrm{NH}_2$		337 (m)	393	0	361	1	285	3	
$\Omega CH_3 \alpha CNH$		285 (w)	315	2	292	2	256	3	
β C–NH ₂		226 (m)	272	0	253	0	243	2	
β CNH + β CH ₂			225	1	204	1	206	2	
$\alpha \text{NCO} + \beta \text{NH}_2$			202	3	181	2	188	1	
$\tau CH_2 + \tau CH_3$			188	1	174	1	159	2	
$\tau CH_3 + \beta NNN + \beta NCH + \beta$	$3 \mathrm{NH}_2$	126 (w)	146	0	142	0	155	2	
Lattice vibrations			113	0	98	0	144	2	
β NCO + ω CH ₃			78	1	71	1	90	0	
ωCH ₃			63	0	58	2	63	1	
$\omega \mathrm{CH}_3$			56	2	47	0	46	1	
$\omega \mathrm{CH}_3$			38	0	23	0	36	0	

Table 2. (contd...)

fact that the optimization performed in an isolated condition, whereas the crystal environment affected the experimental X-ray structure.

4.2 Vibrational assignments

The FT-IR and FT-Raman spectra of the title compound were shown in figures 1-2. None of the predicted vibrational spectra have any imaginary frequency, implying that the optimized geometry is located at the local lowest point on the potential energy surface. We know that ab initio, MP2 and DFT potentials systematically overestimate the vibrational wave numbers. These discrepancies corrected either by computing anharmonic corrections explicitly or by introducing a scaled field¹³ or directly scaling the calculated wave numbers with the proper factor.¹⁴ Considering systematic errors with scaling factor of 0.9051, 0.9500, and 0.9679, we calibrated the vibrational wave numbers calculated by HF, MP2, and B3LYP, respectively. After scaled with a scaling factor, the deviation from experiments is less than 10 cm^{-1} with a few exceptions. Theoretical and experimental results of the title compound are shown in table 2. The DFT method is superior to HF and MP2 methods in terms of realistic reproduction of both band intensity distribution and general spectral features.

4.2a *C–O vibration:* The characteristics infrared absorption frequencies of carbonyl group in ketones

are normally strong in intensity and found in the region 1685–1660 cm⁻¹. The carbon–oxygen double bond formed by p_{π} – p_{π} between carbon and oxygen. Because of the different electro negativities of carbon and oxygen atoms, the bonding electrons not equally distributed between the two atoms. The lone pair of electrons on oxygen also determines the nature of the carbonyl group.¹⁵ The CO stretching vibration in dacarbazine has a scaled computed frequency of 1620 cm⁻¹. This is in agreement with strong experimental frequency in FT-IR spectrum at 1612 cm⁻¹. The C–O out-of-plane bending vibration mode with the theoretical frequency of 142 cm⁻¹ agrees well with experimental FT-Raman value. The above conclusions are in agreement with literature value.¹⁶

4.2b *C*–*NH*₂ vibrations: The molecule under investigation possesses only one NH₂ group and hence one expects one symmetric and one asymmetric N– H stretching vibrations in NH₂ group. In all the primary aromatic amines, the N–H stretching frequency occurs in the region 3300–3500 cm⁻¹.¹⁷ Hence, the weak bands in IR spectrum were located at 3370 and 3232 cm⁻¹ assigned to N–H asymmetric and symmetric stretching vibrations, respectively in NH₂ group. These assignments agree well with the earlier reports.¹⁸ The scaled –NH₂ asymmetric and symmetric stretching are in the range of 3376–3238 cm⁻¹ in B3LYP/6-31G (*d*, *p*). The computed –NH₂ scissoring vibration at 1498 cm⁻¹ in B3LYP/6-31G(*d*, *p*) is in agreement with the expected experimental value at

	B3LYP			HF	MP2
Atom with numbering	6-31G*	6 - 311G(<i>d</i> , <i>p</i>)	6 - 31G(<i>d</i> , <i>p</i>)	6-31G(d, p)	6-31G(d, p)
C ₁	0.2301	0.2322	0.1718	0.2941	0.3488
N_2	-0.4117	-0.4096	-0.2461	-0.4753	-0.6033
C ₃	-0.1242	-0.1221	-0.3088	-0.0208	0.0533
C_4	0.4759	0.4780	0.3510	0.5513	0.6092
N ₅	-0.7332	-0.7311	-0.6565	-0.8619	-0.6908
C_6	0.5961	0.5982	0.6378	0.7439	0.7671
O_7	-0.4137	-0.4116	-0.3642	-0.5735	-0.6408
N_8	-0.7863	-0.7842	-0.8015	-0.9632	-0.7656
N ₉	-0.2519	-0.2498	-0.0254	-0.1720	-0.4278
N ₁₀	-0.0217	-0.0196	-0.1173	-0.1319	-0.0184
N ₁₁	-0.3670	-0.3649	-0.2311	-0.4069	-0.3996
C ₁₂	-0.3103	-0.3082	0.3895	-0.2812	-0.1317
C ₁₃	-0.3240	-0.3219	-0.3481	-0.2484	-0.1223
H_{14}	0.2037	0.2058	0.1968	0.2524	0.1776
H ₁₅	0.3548	0.3569	0.3686	0.4468	0.3440
H ₁₆	0.3446	0.3467	0.3274	0.3954	0.3377
H ₁₇	0.3267	0.3288	0.3240	0.3832	0.3128
H ₁₈	0.2254	0.2275	0.2132	0.2055	0.1429
H ₁₉	0.1710	0.1731	0.1647	0.1507	0.1821
H_{20}	0.2254	0.2275	0.1944	0.1920	0.1220
H ₂₁	0.1973	0.1994	0.1981	0.1868	0.1238
H ₂₂	0.1958	0.1979	0.1756	0.1786	0.1431
H ₂₃	0.1973	0.1994	0.1651	0.1544	0.1359

 Table 3.
 Mulliken atomic charges of dacarbazine for different levels and basis sets.

Figure 5. Comparison of different methods for calculated atomic charges.

1496 cm⁻¹. The C–NH₂ out-of-plane and in-planebending vibrations at 226 and 381 cm⁻¹ observed at FT-Raman spectrum agree well with theoretically obtained values using B3LYP/6-31G(d, p).¹⁹

4.2c C=N, C-N vibrations: The identification of C-N vibrations is a difficult task, since the mixing of vibrations is possible in this region. However, with the help of the animation option of chemcraft

Basis set	α_{xx}	α_{xy}	α_{yy}	α_{xz}	$lpha_{yz}$	$lpha_{zz}$	$\langle \alpha \rangle$
B3LYP/6-311G	204.182	-10.604	118.330	-0.002	0.003	55.637	126.049
B3LYP/6-31G	198.371	-11.117	113.912	0.001	0.000	47.120	119.801
B3LYP/6-31G*	193.266	9.551	107.098	3.308	1.633	53.520	117.961
HF/6-31G	164.977	6.405	100.136	-0.002	-0.002	45.773	103.628
MP2/6-31G	106.556	5.545	73.206	2.706	1.950	23.133	67.363

 Table 4.
 Calculated polarizabilities for dacarbazine.

Table 5. Comparison of HOMO, LUMO, energy gaps ($\Delta \varepsilon_{\text{HOMO-LUMO}}$), first ionization potentials and chemical hardness of dacarbazine (eV).

Basis set	$\mathcal{E}_{\mathrm{HOMO}}$	$\mathcal{E}_{ m LUMO}$	1st ionization potential	$(\Deltaarepsilon_{ m HOMO-LUMO})$	Chemical hardness
B3LYP/6-311G	-518·706	-1.684 -1.477	-260.195	517·021	258·510
B3LYP/6-31G	-519·302		-260.382	517·825	258·915
B3LYP/6-31G*	-518·952	-1.615	-260·283	517·337	258.668
HF/6-31G	-557·848	2.497	-280·172	555·351	277.675
MP2/6-31G	-512·650	-1.586	-257·118	511·064	255.532

Figure 6. Comparison of different methods for calculated polarizabilities.

graphical interface for Gaussian programs the C–N vibrations identified. Silverstein²⁰ assigned C–N stretching absorption in the region 1382–1266 cm⁻¹ for aromatic amines. The IR bands appearing at 1510 and 1441 cm⁻¹ are assigned to $v_{C=N}$ vibrations and 1255 and 1209 cm⁻¹ are assigned to $v_{C=N}$ vibrations with the δ_{CH} for the title compound. All these results agree with the results of Shanmugam *et al*²¹ and Sundaraganesan *et al*.²²

4.2d *Methyl group vibrations:* The title compound dacarbazine, possesses two CH_3 groups attached to the side chain of N=N-N to the five member ring. There are nine fundamentals one can expect to each CH_3 group, namely the symmetrical stretching in CH3 (CH₃ sym. stretch) and asymmetrical stretching (in plane hydrogen stretching mode); the symmetrical (CH₃ sym. deform) and asymmetrical (CH₃ asym. deform) deformation modes; the in-plane rocking,

out-of-plane rocking, twisting and bending modes. For the methyl compounds, the stretching mode appears in the range of $2825-2870 \text{ cm}^{-1}$, lower in magnitude compared to its value in CH₃ compounds ($2860-2935 \text{ cm}^{-1}$), whereas the two asymmetric modes for both the types of compounds lie in the same region of $2925-2985 \text{ cm}^{-1}$. The FTIR bands at 2869 and 2755 cm^{-1} and FT-Raman band at 2851 and 2739 cm^{-1} represent the asymmetric and symmetric CH₃ stretching vibrations of the methyl group of dacarbazine.

5. Other molecular properties

5.1 Mulliken charges

The calculation of effective atomic charges plays an important role in the application of quantum mechanical calculations to molecular systems. Our interest here is in the comparison of different methods to describe the electron distribution in dacarbazine as broadly as possible, and assess the sensitivity of the calculated charges to changes in (i) the choice of the basis set; (ii) the choice of the quantum mechanical method. Mulliken charges, calculated by determining the electron population of each atom as defined in the basis functions. The Mulliken charges calculated different levels and at different basis sets listed in table 3. The results can, however, better be represented in graphical form as has been given in figure 5. From these results, it will be possible to

	HF	B3	MP2	
AM1	6-31G(d, p)	6-31G(<i>d</i> , <i>p</i>)	6-311G (<i>d</i> , <i>p</i>)	6-31G(d, p)
	-634.00265	-638.07212	-638.11876	-638.04222
115.1	124.0	118.3	113.8	116.7
	1.4787	1.5202	1.4550	1.6342
	0.4718	0.5007	0.4623	0.5007
	0.3592	0.3943	0.3524	0.3941
104.119	111.227	101.527	115.254	92.527
41.355	41.561	41.505	41.505	41.505
31.562	31.528	31.277	31.584	31.277
31.207	36.279	29.745	42.166	19.745
_	6.455	5.962	5.998	5.965
	AM1 115-1 104-119 41-355 31-562 31-207 -	$\begin{array}{c c} & & & & \\ HF \\ AM1 & 6-31G(d, p) \\ & & \\ -634\cdot00265 \\ 115\cdot1 & 124\cdot0 \\ & & 1\cdot4787 \\ & & 0\cdot4718 \\ & & 0\cdot3592 \\ \hline 104\cdot119 & 111\cdot227 \\ 41\cdot355 & 41\cdot561 \\ 31\cdot562 & 31\cdot528 \\ 31\cdot207 & 36\cdot279 \\ - & & 6\cdot455 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 6. Theoretically computed energies (a.u.) zero-point vibrational energies (kcal mol⁻¹), rotational constants (GHz), entropies (cal mol⁻¹ K⁻¹) and dipole moment (*D*) for dacarbazine.

Figure 7. Computed spectra of dacarbazine at B3LYP/6-31G(d, p).

say to the change to charge distribution by a change in basis set. The charges depending on basis set and are changed due to polarization.

5.2 Molecular polarizability

We have investigated the effect of the basis set on molecular polarizability of dacarbazine using Gaussian 03W. In this study, the computation of molecular polarizability of dacarbazine with different basis sets reported. Here, α is a second rank tensor property called the dipole polarizability and mean polarizability $\langle \alpha \rangle$ are evaluated using

$$\langle \alpha \rangle = 1/3(\alpha_{xx} + \alpha_{yy} + \alpha_{zz}). \tag{1}$$

The polarizability calculations carried out for different basis sets of dacarbazine are summarized in table 4. As seen from the figure 6, the largest polarizability was observed for B3LYP/6-311G (d, p).

5.3 HOMO-LUMO energy gaps and ionization potentials

According to Koopmans' theorem, $I = -E_{\text{HOMO}}$, $A = -E_{\text{LUMO}}$. The ionization potentials and affinity potentials from Koopmans' theorem (or the HOMO and LUMO energies) for dacarbazine are summarized in table 5. The substitutional perturbation affects both the HOMO orbital and LUMO orbital for dacarbazine. In general, the HOMO orbital becomes less bound while the LUMO more bound with increasing heat of formation. From table 5, the lowest energy gap found at MP2 method.

5.4 Thermodynamic properties

The calculated thermodynamic parameters are presented in table 6. Scale factors have been recommended²³ for an accurate prediction in determining the zero-point vibrational energies and the entropy S. The variation in the ZPVEs seems to be insignificant. The total energies found to decrease with increase of the basis sets. The changes in the total entropy of dacarbazine at room temperature at different basis sets are only marginal.

6. Conclusion

The results of the study lead to the following conclusions: (i) The frequency assignments performed for the first time from FTIR and FT-Raman spectra recorded were for dacarbazine. Theoretical DFT and *ab initio* calculations of the vibrational spectra of the molecule presented in this paper were compared with the FTIR and Raman spectra. (ii) Geometries reported within the limits of accuracy of available experimental data. The molecular geometry of dacarbazine was best at the B3LYP level of DFT. (iii) Mulliken charges of dacarbazine at different levels were calculated and the results discussed. (iv) Molecular polarizability and ionization potential of dacarbazine were discussed and reported.

References

- Vaughan K 1990 In The chemistry of antitumor agents (ed.) D E V Wilman (Glasgow: Blackie) pp 159–186
- 2. Carter S K and Friedman M A 1972 Eur. J. Cancer 85
- 3. Godin J R P, Vaughan K and Renton K W 1981 Can.
- J. Physiol. Pharmacol. 59 1234
 4. Clarke D A, Barclay R K, Stock C C and Rondesvedt R S 1955 Proc. Soc. Exp. Biol. Med. 90 484
- Doucette K G, Pye Cory C, Vaughan Keith, Enright Thomas G 2006 J. Mol. Struct.: THEOCHEM 801 21-28

- 6. Carl Kemnitz 2002 Chemoffice ultra 10, Trial version
- 7. Young D C 2001 Computational chemistry: A practical guide for applying techniques to real world problems, John Wiley & Sons Inc, p. 42
- Chis V, Filip S, Miclaus V, Pirnau A, Tanaselia C, Almasan V and Vasilescu M 2005 J. Mol. Struct. 744–747 363
- 9. Becke D 1993 J. Chem. Phys. 98 5648
- 10. Lee C, Yang W and Parr R G 1988 *Phys. Rev.* B37 785
- 11. Frisch M J et al 2004 Wallingford CT, Gaussian Inc
- Grigoriy A Zhurko, Denis A Zhurko 2004 Chemcraft program, Academic version 1.5
- 13. Pulay P, Fogarasi G, Ponger G, Boggs J E and Vargha A 1983 Am. Chem. Soc. 105 7037
- 14. Scott A P and Radom L 1996 J. Phys. Chem. US 100 16502
- 15. Satyanarayana D N 2004 Vibrational spectroscopy Theory and applications (New Delhi: New Age International (P) Limited Publishers) 2nd ed
- 16. Dollish F R, Fateley W G and Bentley F F 2001 Characteristics Raman frequencies of organic chemsitry (Orlando FL: Hartcourt College Publishers) 3rd edn
- 17. Bellamy L J 1980 *The infrared spectra of complex molecules* (London: Chapman and Hall) vol 2
- Wiberg K B and Sharke A 1973 Spectrochim Acta A29 583
- Sundaraganesan N, Meganathan C, Anand B, Dominic Joshua B and Lapouge C 2006 Spectrochim Acta 1386
- 20. Silverstein M, Clayton Basseler G and Morill C 1981 Spectrometric identification of organic compounds (New York: Wiley)
- 21. Shanmugam R and Sathyanarayan D 1984 Spectrochim Acta A40 764
- 22. Sundaraganesan N, Kumar K S, Meganathan C and Joshua B D 2006 *Spectrochim Acta* A65 1186
- 23. Alcolea Palafox M 2000 Int. J. Quantum. Chem. 77 661